For the matrix A=
find the numbers a and b such that A2 + aA + bI = O.
Answer :

… (1)

Answer :
Plug the values in A2 + aA + bI = O
Solve it we get
Equate the corresponding element we get
4+a = 0
a = - 4
and
3+a+b = 0
Plug the value of a = - 4 we get
3- 4+ b = 0
b = 1
plug the value in equation 1 we get
hence a = -4 and b = 1 satisfied the condition
We have A2 + aA + bI = O
Plug the value of a and b
A2 - 4A + I = O
Multiply by A-1 we get
A2 A-1- 4A A-1+ I A-1 = O A-1
A – 4I +A-1 = O
A-1 = 4I – A
Plug the value we get
No comments:
Post a Comment