Tuesday, May 7, 2013

Verify whether the following are zeroes of the polynomial, indicated against them

Question 3. Verify whether the following are zeroes of the polynomial, indicated against them.
(i) p(x) = 3x + 1, x = - 1/3
(ii) p(x) = 5x – π, x = 4/5
(iii) p(x) = x2 – 1, x = 1, –1
(iv) p(x) = (x + 1) (x – 2), x = – 1, 2
(v) p(x) = x2, x = 0
(vi) p(x) = lx + m, x = –m/l
(vii) p(x) = 3x2 – 1, x = - 1/√3 , 2/√3
(viii) p(x) = 2x + 1, x =1/2

Solution: (i) p(x) = 3x + 1, x = - 1/3
Plug x  = -1/3
=> p(x) = 3x + 1
=>p(-1/3) = 3(-1/3)  +1
=>p(-1/3) = -1 +1
=>p(-1/3) = 0
When P(a)  = 0 then a is always zero of polynomial
Hence  -1/3 is zero of polynomial p(x) = 3x + 1
(ii) p(x) = 5x – π, x = 4/5
Plug x = 4/5 we get
=> p(4/5) = 5x – π,
=> p(4/5) = 5(4/5) – π,
=> p(4/5) = 4 – π,
And pi = 22/7 so that
=> p(4/5) = 4 – 22/7 is not = 0
Hence 4/5 is not zero of polynomial p(x) = 5x – π
(iii) p(x) = x2 – 1, x = 1, –1
Plug x = - 1
=> p(x) = x2 – 1
=> p(-1) = (-1)2 – 1
=> p(-1) =  1 – 1
=> p(-1) = 0
Plug x =  1
=> p(x) = x2 – 1
=> p(1) = (1)2 – 1
=> p(1) =  1 – 1
=> p(1) = 0
Hence both x = - 1 and 1 are zero of polynomial p(x) = x2 – 1
(iv) p(x) = (x + 1) (x – 2), x = – 1, 2
Plug x = - 1
=>p(x) = (x + 1) (x – 2)
=>p(-1) = (-1 + 1) (-1 – 2)
=>p(-1) = (0) (-3)
=>p(-1) = 0
Now plug x = 2 we get
Plug x = 2
=>p(x) = (x + 1) (x – 2)
=>p(2) = (2 + 1) (2 – 2)
=>p(2) = (3) (0)
=>p(2) = 0
Hence -1 and  2 both are zero of the polynomial p(x) = (x + 1) (x – 2)
(v) p(x) = x2, x = 0
Plug x = 0 we get
=>p(x) = x2
=>p(0) = (0)2
=>p(0) = 0
Hence 0 is the zero so polynomial p(x) = x2
(vi) p(x) = lx + m, x = –m/l
Plug x  = - m/l we get
=> p(x) = lx + m
=> p(-m/l) = l(-m/l) + m
=> p(-m/l) = -m + m
=> p(-m/l) = 0 
Hence  - m/l is the zero of polynomial p(x) = lx + m
(vii) p(x) = 3x2 – 1, x = - 1/√3 , 2/√3
Plug x = - 1/ √3 we get
=>p(x) = 3x2 – 1
=>p(-1/√3) = 3(-1/√3)2 – 1
=>p(-1/√3) = 3(1/3) – 1
=>p(-1/√3) = 1 – 1
=>p(-1/√3) = 0
Plug x =  2/ √3 we get
=>p(x) = 3x2 – 1
=>p(1/√3) = 3(2/√3)2 – 1
=>p(1/√3) = 3(4/3) – 1
=>p(1/√3) = 4 – 1
=>p(1/√3) = 3
Hence x = - 1/√3 is zero of the polynomial p(x) = 3x2 – 1
But x = 2/√3 is not a zero of the polynomial
 (viii) p(x) = 2x + 1, x =1/2
Plug x = ½ we get
=> p(x) = 2x + 1
=> p(1/2) = 2(1/2) + 1
=> p(1/2) = 2(1/2) + 1
=> p(1/2) = 1 + 1
=> p(1/2) = 2
Hence ½ is not a zero of polynomial p(x) = 2x + 1

No comments:

Post a Comment